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ABSTRACT

The scattering properties of a linear array of parallel, center-loaded,
cylindrical elements have been investigated with the ultimate objective of ob-
taining information about the character of the array from its scattered field.
To this end, a set of integral equations for the currents induced in the linear
array illuminated by an incident plane wave were derived from the equations
of Maxwell and the boundary conditions at the surface of the array. Using a
zero-order approximation to the form of the axial distribution of the induced
currents in the array, a pair of complex current coefficients were calculated
numerically for each element of the array using a technique incorporating
the set of integral equations. The approximation technique gives reasonable
accuracy in the calculation of the /-plane, far-zone, scattered field from the
induced currents, provided the electrical half-length of the elements of the
array is less than 57/4 radians.

The scattered field of an eight-element array was calculated for various
conditions of impedance loading and illumination of the array.

A significant result of this investigation was the discovery that the
H-plane scattered field of a linear array of cylindrical elements illuminated
by a plane electromagnetic wave consists of two factors: a reflection factor
and an interference factor. The interference factor is simply the complex
array factor of the array when excited with a uniform amplitude and an
element-to-element phase progression of 2(d/k) sin <6inc radians, where
(d/A) is the interelement spacing of the array in wavelengths and 0inc is the
angle of incidence of the illumination. The reflection factor turns out to be
the H-plane scattered field in the reflected direction where the interference
factor becomes unity.

From the interference factor we determined the positions of the grating
lobes and the minima of the I-plane scattering pattern of the array for vari-
ous plane-wave illuminations.

It was found that the plane of polarization of an array, the number of ele-
ments, the interelement spacing, and, possibly, the resonant frequency of the
elements can be determined from the H-plane scattering characteristics of
the passive linear array of cylindrical elements.

PROBLEM STATUS

This is a final report on one aspect of the problem; work on the problem
is continuing.

AUTHORIZATION

NRL Problem R02-44
Project ARPA Order 820

Manuscript submitted December 19, 1967.
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THE SCATTERING OF A PLANE ELECTROMAGNETIC WAVE
BY A LINEAR ARRAY OF CENTER-LOADED CYLINDERS

INTRODUCTION

The majority of the early theoretical investigations of electromagnetic scattering
involved the scattering of a plane electromagnetic wave by a highly conducting, simple
geometric object, such as a sphere or cylinder. Extensive references to this early work
can be found in King and Wu (1). In recent years a number of papers have appeared in
the literature which treated certain simple antennas as scattering devices; in particular,
the cylindrical antenna has received considerable attention by Chen and Liepa (2) and
others. Chen studied the effect of central loading on the induced current on a thin cylin-
der illuminated by a plane wave at normal incidence. By suitable variation of the load
impedance, Garbacz (3) determined certain antenna parameters, such as impedance and
power gain, from measurements of the scattering cross section of a single-port antenna
for fixed frequency, polarization, and antenna orientation.

The literature contains extensive treatment of the antenna as a transmitter, that is,
as a transducer of current and voltage at a terminal pair to electric and magnetic fields
radiating into space. The inverse problem of the receiving antenna, that is, a transducer
of incident electric and magnetic fields into current and voltage at a terminal pair, has
not received a similar amount of attention. This condition of the literature stems from
two facts: first, the mathematical problem involved makes the analytical study of the
receiving antenna very difficult except in special instances, and, second, the quantity
almost invariably of interest in the receiving case is the power delivered by an incident
field to the load connected across the antenna terminals. This quantity can be obtained
most conveniently from the transmitting properties of the antenna by reciprocity consid-
erations, without a detailed knowledge of the complicated field and current distributions
over the surface of the antenna. If, however, we are interested in the antenna as a scat-
terer, we are concerned not only with the power delivered to the load but also with the
distribution of the power density which the antenna scatters into surrounding space. To
find the scattered electromagnetic field, we need detailed information about the currents
induced on the conducting surfaces of the antenna which radiate the scattered field.

Very little work on the scattering of an electromagnetic wave by an antenna array
has appeared in the literature. To improve our knowledge and understanding of array-
scattering behavior, we decided to make a theoretical investigation of the scattering of a
plane electromagnetic wave by a simple linear array of N parallel, cylindrical, center-
loaded elements.

The approach used to solve the steady-state scattering problem is first to find an
approximation to the complex currents induced in the elements of the array by the inci-
dent illumination. Once the current distribution, in amplitude and phase, along each ele-
ment of the array is determined, the far-zone scattered field radiated by these currents
is easily calculated from the superposition of the radiation fields of the individual ele-
ments of the array.
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THEORETICAL SKETCH

Theoretical Model

Consider a plane electromagnetic wave of wavelength A with its electric vector po-
larized in the direction incident in the II plane (-y plane) of the linear array of N
center-loaded cylinders of infinite conductivity positioned in space as shown in Fig. 1.
The electromagnetic wave is incident at an angle ckbin c to the normal to the plane of the
array. The central impedances Z are lumped, or without physical dimensions. The
cylindrical elements of the array are identical, with the exception of the load impedances,
each with a half-length and a radius a. For the sake of simplicity, we assume the ele-
ments of the array to be very thin cylinders with half-lengths larger than 400 times their
radius. Also, it is assumed that 2a/X is less than 0.0100. In the theoretical model cho-
sen, only the induced currents that flow along the length of cylinders contribute signifi-
cantly to the far-zone scattered field; consequently, the induced currents maintain a re-
tarded vector potential possessing solely a component. From the symmetry of the
array and the uniformity of the phase and amplitude of the incident electric field along
the entire length of each cylinder, it follows that the induced currents and their respec-
tive vector potentials possess even symmetry in z.

We use a complex notation with the time-dependence factor exp (jut) of the incident
wave suppressed in the treatment of steady-state scattering. The rationalized mks-
couloumb system of units is used throughout the report. All alternating (oscillating)
quantities are complex unless otherwise indicated.

Derivation of the System of Integral Equations of the Array Currents

Our ultimate purpose is to calculate the scattered field of the array; to do this cal-
culation we first find an approximation to the current induced in each element of the

z

Z1 2 N. N

d d

x

P.

Fig. 1 - The theoretical model
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array by the incident illumination. The induced currents must satisfy a system of linear
integral equations, which we shall derive in the following pages.

The incident electric field tangential to the surface of the m-th cylinder may be writ-
ten in the form

E' = E exp(jem), (1)

where Eo and 0m are, respectively, the real amplitude and phase of the incident electric
field, each of which is constant along the cylinder. The induced tangential electric field
at the surface of the m-th cylinder, maintained by the induced currents and charges on all
of the cylinders of the array, is given by

a~z -a q~m, (2)
EM2 ( ) = a i Am (2) (2)

where Am2 is the tangential component of the retarded vector potential on the surface of
the m-th cylinder due to all the array currents and 'Dta is the scalar potential on the sur-
face of the m-th element due to the charges on all of the cylindrical surfaces of the array.
In the steady state, (i1)m can be eliminated by means of the Lorentz condition (4):

:3Amz) - jc Ho Lom (D2 )

j- ' j/24 mz/, (3)

where = 27T/i is the phase constant of space, is the radian frequency of the illumina-
tion, c0 is the permittivity of space, and L,. is the permeability of space.

Combining Eqs. (2) and (3), we have

2) d m2 (2)+ (4)
Emzo(a) -j do/3 8 d22 A

The electric field Eg across the very small gap of width 2A at the center of the m-th cyl-
inder is related to the voltage drop across the center load as follows:

JEm 2 d = Zm/m(O) (

where Zm is the complex central load impedance and /m(°) is the current at the center of
the m-th element of the array. For our dimensionless load, A must approach zero in the
limit, and we obtain from Eq. (5)

E = Zmm(O) 3(2), (6)

where (2) is the Dirac delta function.

With a perfectly conducting cylinder, the total tangential electric field vanishes at
the surface of the cylinder, excluding the infinitesimal region of the central load. This
means

3
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a i
Em. +E mz =O (7)

along the cylinder, and in the central gap

g a i
Em = Emz + Ems = Zm/m(O) (). (8)

From Eqs. (1), (4), and (8) we obtain the following differential equation for Am2 (z) valid
over the entire length of the m-th cylinder:

d Am, W + 32 Am(z) = j(/
2
/1W) [Zmm(O) 6(Z) - o exp O ]- (9)

The general solution of the inhomogenous differential equation (9) consists of the
complementary function and a particular integral. The complementary function is given
by

[Am(23)] = (-jC)(C1 CoS 3Z + C2 sin /3z), (10)

where C= 1 /(' o') 1/2 is the velocity of propagation of electromagnetic waves in free
space and C and C2 are constants of integration. The constant C2 is zero, since Am(2)
possesses even symmetry in z in our theoretical model. A particular integral can be
written as follows:

[Am(2()] = (-j/C) [(EO/1) ( - cos /3z) exp(jOm) - (Zmlm(O) /2) sin /3z], for < 2 < h (lla)

and

[Am2(e)] = (-j/C) [(EO/3,)( 1 - cos z) exp( jOm) + (ZmIm(O) /2) sin /3z], for - < < . (lib)

Equations (11) satisfy the differential equation (9) for - < z h. In order for Eqs. (11)
to satisfy Eq. (9) at the infinitesimal gap in the center of the m-th cylinder, it is neces-
sary that dAmz/dz possess a jump at = 0 of a magnitude j'82Zmlm(O) 7W which in turn as-
sures that d2Am/dz 2 contains a delta function of the correct magnitude to balance the im-
pulsive term appearing in the right-hand member of Eq. (9). In shorthand form, the
general solution of the differential equation (9) is given by:

Am2() = Hj/C) [Cl cos ,B + (EO//3)( - cos /3z) exp(j Om) - (ZmIm(O)/2) sin zI, for -h<z<. (12)

Setting = h in Eq. (12) yields the following expression for C:

C = sec 13h{(jC/2) [Amz(k)+Am,(-h)I -(EO//3)(I-cos/3h) exp(jOm) +(Zmlm(O)/2) sin 3h} . (13)

Since A(2() is an even function, the expression for C becomes

C = sec 3h{ijCA(1(h) - (EO/)( - cos Ph) exp(jOm) + [Zmlm(O)/2] sin Ah} . (14)

From Eqs. (14) and (12) we obtain the following equation:

Am,2) -A (h) = (-j/C) sec /3h {zmlm(O)/2] sin /3(h- Iz1)

+ [jCA,.(k) - (E//) exp(jO)] (cos P3 - cos 3h)} (

4
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From its definition, the component of the retarded vector potential just outside the
surface of the m-th cylinder at a distance from the center of the cylinder is given ap-
proximately by the expression

lv h

A(z)=(/.L/47TES ( d ) Kmi ( z. ' ) d ' (16)

where

exp{- j/[( 22 I)2+ (-i) 2 d
2

] 1/2 f

Kmi~s 1/2 ,for m i
[( z z I) 2 + (- i) 2 d2]

and

exp {-Bzz)2+a a2] 

Kmi(2,2')~ { )')~ + a12} ' for m= i,

[(2- 1)2 + a
2
]

in which d is the center-to-center spacing of the cylindrical elements of the array.

Equation (16) is an accurate representation of the vector potential, except at points
very near the ends or the center load of the element. By substituting Eq. (16) into Eq.
(15) and letting m assume all integral values from 1 to N, we obtain the following system
of linear integral equations for the array of N center-loaded cylinders:

N h

E li~ ) [Kmi(2 a) - Kmi(h, ')] do i T Sec Ph/(Zmlm(0)/2) sin (h- z

+ [jeAm2(h) - (E0 1//) exp(j e)] (cos P2 - cos h)1, m = 1, 2, 3, N, (17)

where Ro (4, /1E) 1/2 =12077 is the characteristic resistance of space.

Approximation Technique

The solution of the system of integral equations of the array to obtain the induced
currents in the cylindrical elements is indeed a formidable task and will not be attempted
here. Instead, we shall assume the induced currents can be represented by the zero-
order approximation

I i (/32) = (ti (cos /32 - cos /3h) + 53i sin /3(h - I , (18)

where di and Si are undetermined complex current coefficients. Note that Eq. (18) sat-
isfies the end conditions that li vanish at = +h independent of finite di and Bi . King (5)
suggests that Eq. (18) is an adequate approximation for use in the calculation of the far-
zone radiation field of an array of thin cylinders of electrical half-length /h less the 5Ti/4.

The scattered or reradiated field is relatively insensitive to small errors in the current
distribution on the array. The current coefficients di and Bi can be determined from the
set of integral equations and, thus, take into account the mutual coupling or interaction
between the elements of the array.

5
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Using Eq. (18) in Eq. (17), the system of integral equations of the array becomes

E {Q~i[U (z) cos h Mmi(h)]Fc(Z) + (a [U() Fs(z) cos h - Lmi(h) Fc(z)]}

= j(Zm/60)[dm( cos 8h) + msinh]Fs(z) + (EO/30I)(cos Om+jSinOm)Fc(2) m 1,2,3..-N,

(19)
where

Fc( ) = cos 8 - cos 83h,

F8 (z) = sin 8(h - I )

Mmi(z) - mi(h) = Umi(2) F(z)

Lmi () - Lmi (h) = mi (z) Fs(Z)

h

Aimi(Z) = f (cos 8z' - cos 8h) Kmi(z, z) dz'

Lmi(S) = sin (k- Ih I) Kmi( z,z) dz'-

We desire to determine the complex constants di and 9i from Eq. (19) in such a
manner as to cause our zero-order approximation to the induced currents to hold fairly
well along the entire length of the elements of the array. In what follows we employ a
technique similar to that of Chen and Liepa (2) in the determination of the current coeffi-
cients di and Fin

For a given value of /h, the real part of the dominant term (i = m) of the sums in Eq.
(19) involving uci(z) and Umi(z) varies with in a manner like F(z) and F (z), respec-
tively, except near the center and the ends of the elements. Thus, to achieve our objec-
tive, it seems reasonable to divide Eq. (19) into the following two sets of equations:

N

Et {Umi(c) cos /3h-Afmi(h)] - 3iLmi(h)} = j(E 0 /30/3)(cos Om + sin m) m = 1,2,. , N,

(20)
and

N
13ibUmi(z 5 ) cos 3 = j(Zm/60) I(1 - cos/3k) + 3m sin,8h], m = 1,2.N, (21)

i =1

where zc and z are reference values in . Equations (20) and (21) are formed by re-
spectively equating the coefficients of F(z) and F(z) on opposite sides of Eq. (19). For
a given angle of incidence and value of 3h, the current coefficients ai and 9i3 are deter-
mined from Eqs. (20) and (21) considered as a single set of simultaneous linear equations.
For best accuracy in the determination of the constants di and %i, we choose z,, and .
such that the current distribution functions F( 2a) and F( z,) remain as large as possible
over the range of interest in /3h. The reference values Z, and z, are chosen as follows:

6
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¾C = Zs = for 0 < 3h < T/72

and

a = and = h - X/4, for 7T/2 < h < 2.

When the elements of the array are an odd multiple of half-waves in length, the ex-
pression for the element currents takes the simple form

I i ( 8z) = Di co s ?, . (22)

The complex constants Di are determined from Eq. (19), which becomes, under this con-
dition,

N

- E Diy 4Mi(h) = (jZ,/60) Dm sin (k7T/2) + (EO/308)(cos m + i sin mm) m 1,2, N, (23)
i al

where k is the odd number of half-wavelengths in the element length. Note that Eqs. (20)
and (21) and the preceding discussion about the reference values of do not apply to this
special case.

In the absence of experimental or theoretical information from independent sources
on the currents induced in an array of linear elements illuminated by a plane wave, it
was necessary to test the approximation technique used in this report to calculate the
induced currents in the array. The array currents found by this technique do not satisfy
the set of integral equations of the array; however, the approximate currents can be
checked in a semiquantitative manner. To achieve this end, we obtain a measure of how
much the approximate currents fail to satisfy the set of integral equations (19) of the ar-
ray. The method of evaluation of the approximate technique and the results obtained for
several values of the electrical half-length of the elements are presented in Appendix A.
From the work of Appendix A, it was concluded that the approximate technique used in
arriving at the induced currents gives reasonable accuracy in the calculation of the scat-
tered field of the currents, provided the electrical half-length of the array elements does
not exceed 57T/4.

Also, it is found from numerous calculations that the approximate solution to the
array-scattering problem presented in this report satisfies the reciprocity theorem of
electromagnetic fields to a high degree of accuracy.

The Far-Zone Scattered Field of the Array

We shall now proceed to the development of an expression for the far-zone scattered
field of the array. At the observation point P of Fig. 1, which is at a distance from the
array larger than 1000 times the largest dimension of the array, the 2 component of the
far-zone retarded vector potential of the current in the i -th element of the array is given
approximately by the expression

,L, exp (-j/3r)hA
Ai = ° 4 !,r j i (,32 ') exp [j,8( cos 0 + py sin 0 sink¢)] d. (24)

The coordinates r 0, and X locate the observation point, and 2a' and y' = (i - ) d are the
array coordinates. By virtue of the linearity of our physical system, it follows that the
vector potential of the array at P is simply the vector sum of vector potentials at the ob-
servation point of the individual element currents of the array. Therefore, the vector
potential of the array at P is given by

7
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= /L exp(-j3r NAz2 = 7 A, exp [j ( i - 1),3d s i n s i n i (/, ') exp ( j32' c os 0) dz ' . (25)
i =1 -

In the direction (, k), the far-zone scattered electric field of the array is related to
the vector potential by the expression

Es = j,eA 2 s in (26)

Putting Eq. (25) in Eq. (26), and using the fact that the element current is an even function
of 832', we obtain the final form of the expression for the steady-state scattered electric
field, namely,

= i sin 0 exp(-j/8r) E i () cos (u cos 0) du exp[j(i - 1),dsin sin , (27)

where u =8z'.

In the calculation of the scattered field, it is convenient to make the results inde-
pendent of the distance from the center of the first element of the array to the point of
observation. To achieve this condition, we multiply Eq. (27) by the reciprocal of the
quantity (60/r) exp(-j8r) to obtain

N ,B3

(Es)n= sin 0 L A I(u) os (u cos0) dujexp[j(i - 1)8dsin sink (28)

which is defined as the normalized scattered electric field.

The effective scattering coefficient of the i -th element of the array is defined as

,8h

Gj exp(jyi) X j(u) cos (cos0) du, (29)

where G and y are, respectively, the real amplitude and phase of the scattering coeffi-
cient. Introducing Gi and yi, in Eq. (28), we obtain

N

(En) = j sin Gi exp[j(i - 1),8d sin sin k + iy] . (30)
i =1

It should be understood that both Gi and y are functions of /Ak, (d/k), the load impedances,
and the angle of incidence of the illumination.

Under most conditions of H-plane scattering, it is found from our calculations (Ap-
pendix B) that the values of Gi change only a small percentage across the array, and the
values of Yi change approximately linearly across the array. That is, y can be expressed
in the form

y = y1 + (i - 1)/d sin in C (31)

where in, is the angle of incidence of the illumination and yl is the phase of the scatter-
ing coefficient of the first element for non-normal incident illumination or the average
phase of the scattering coefficients of the elements of the array in the case of normal in-
cidence. If in Eq. (30) we replace G by G, its average value taken over the array, and

8
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y by the expression given by Eq. (31), Eq. (30) becomes a finite geometric series which
can be summed to yield the following approximate formula for the normalized, H-plane,
scattered field:

(E;) Ga~~ [in (Nt/'/2)1 (* (N-1

(Esn = GavL[in (/2) j exp [ ( -+ + (N - k/2)] (32)

where = 83d(sin ¢ + sin i n 

From extensive calculations we found that Eq. (32) agrees well in both amplitude and
phase with Eq. (30), except near the nulls of the function s i n (NqJ/2) /s i n (/2) and regions
in 8h where the array exhibits resonance phenomena. Over the area covered by this in-
vestigation, we find that Eq. (32) is quite helpful in the exploration of the general charac-
ter of the scattered field. Equation (32) is particularly useful and fairly accurate in the
determination of the angular positions of the major or grating lobes and the minima of
the scattered radiation pattern of the array.

The Positions of the Grating Lobes and the Minima of the H-Plane
Scattering Pattern of the Array

It is easily demonstrated from Eq. (32), for an array with fixed physical dimensions
and load impedances, illuminated by a plane wave of a given wavelength and angle of in-
cidence, that the major, or grating, lobes of the H-plane scattering pattern are centered
approximately at the values of X which satisfy the relation

0/2 = n7z 

or

sin > +(2n7//3d) - sin 6in c, (33a)

where n = 0, 1, 2,3, ... is the order of the grating lobe. According to Eq. (33a), the zero-
order grating lobe is located at the specular observation angle 0 = -a; ncn independent of
the electrical interelement spacing 8d. The back-scattered grating lobes are centered
at = A; n, by definition. Setting P = i nc in Eq. (33a), we obtain the condition for the oc-
currence of a back-scattered grating lobe, namely,

sin ¢in = ±nwi//83d. (33b)

Table 1 shows the angles of incidence where back-scattered grating lobes occur for vari-
ous interelement spacings in wavelengths.

Table 1
The Angles of Incidence which Yield Back-Scattered Grating Lobes

Angles of Incidence (degrees)

F 1/2 ~ 0 1 | 2 3 4 5 6 

1/2 0 90 - - - - -

1.0 0 30 90 - - _
3/2 0 19.5 41.8 90 - _ _
2.0 0 14.5 30 48.6 90 -

5/2 0 11.5 23.6 36.9 53.1 90 -

3.0 0 9.6 19.5 30.0 41.8 56.4 90

9
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Also, from Eq. (32) it is observed that the position of the minima of the H-plane
scattering pattern are approximately determined by the condition

N2 = ±k7r, k = 1,Z;3,....

or

sin k =(2k7r/N/3d) -sin Ojnk c (34)

provided (/2) is not zero or an integral multiple of -r.

THE RESULTS OF A THEORETICAL STUDY OF THE
SCATTERED FIELD OF AN ARRAY

The Model Used in the Investigation

The model used in the investigation is shown in Fig. 1. The model involves an eight-
element linear array with uniform load impedances and an interelement spacing equal to
the element length. The physical dimensions of the array are considered fixed, while the
electrical half-length of the elements /8h changes linearly with the frequency of the inci-
dent electromagnetic wave. The phase of the incident field at the m-th element of the ar-
ray is given by

0m = (m- 1),d sin inc (35)

The zero-phase reference in all the work to follow is the phase of the incident field at
the first element of the array. In our scattering calculations, the ratio of the radius to
the length of the elements is fixed at 0.001, and we keep Eoh = 30 to determine the
strength of the incident illumination. The numerical investigation of the scattered E field
is limited in this report to the H plane of the array.

The Results of the Investigation of Array Scattering

A Typical Set of Array Current Distributions - As an example of the currents in-
duced in the array, we present Fig. 2, which shows the distribution of the in-phase and
quadrature components of the axial currents induced in the various elements of the model
array of full-wave dipoles with central nonreactive load impedances of 72 ohms by a
plane wave incident at -20 degrees. It is evident that both amplitude and phase distribu-
tion information is available from these graphs.

An Example of a Polar Scattering Pattern of the Array - Figure 3 shows a polar di-
agram of the amplitude of the scattered electric field E of an array of eight half-wave
elements with a nonreactive load impedance of 72 ohms when illuminated by a plane elec-
tromagnetic wave incident at -40 degrees. Note the major scattering lobes in the re-
flected direction of 40 degrees and in the forward scattering direction. Also, notice the
symmetry of the pattern about the line of the element centers. In reality, the scattered
energy in the forward direction is slightly less than in the reflected direction, because
the induced surface current density on the shadowed half of the cylinders is slightly less
than on the illuminated half of the cylinders.*

*Using the classical formulas (see King and Wu (1), Eq. 13.3, page 39) for the surface
current density induced on an infinitely long cylinder of infinite conductivity by a plane
electromagnetic wave, we find (for /3a = 0.01) that the surface current density at the
center of the shadowed half of the cylinder is reduced in amplitude by 6% and shifted in
phase by 11 degrees relative to the current density at a point diametrically opposite in
the center of the illuminated half of the cylinder.

10
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Fig. 3 - A H-plane polar scattering diagram of the model array

The Distribution of the Normalized Amplitude of the Scattered Electric Field in /2 -
In Fig. 4 we present a universal graph of the distribution of the amplitude of the normal-
ized scattered field of the eight-element array under study. The figure shows the re-
flected lobe centered at 5/2 = o and the first-order grating lobes centered at tk/2 = ±7T. The
solid curve represents the field distribution given by the approximate Eq. (32), while the
indicated points are derived from the more accurate formula of Eq. (30). The agreement
is quite good considering that the conditions for the points were chosen deliberately to
show the greatest possible disagreement between the two formulas. Near the element
resonance at ,3h = 1.57 and at 8Bh = 3.64, where the reactance of the load impedance ap-
parently resonates the antenna elements, Eq. (32) is not as good an approximation to Eq.
(30) as elsewhere in 13h (see Appendix B).

The effect on the scattering pattern of the array resulting from a change in the load
impedance is portrayed in Fig. 5. The change in the nonreactive load impedance from 72
ohms to 600 ohms has only a small effect. The points calculated from Eq. (30) again fall
closely on the solid curve representing Eq. (32).

It is evident from our study that the normalized solid curve of Fig. 4 holds essentially
independent of the load impedance, the angle of incidence, and the frequency of the illumi-
nation. Supplemental to the information of Figs. 4 and 5, the actual amplitude of the scat-
tered electric field, obtained from Eq. (30), in the reflected, or specular, direction of
observation (= o) under various conditions is presented in Table 2.

12
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Fig. 4 - A universal H-plane scattering pattern of the model array
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Table 2
Es at the Center of the Reflected Lobe of
the Scattering Pattern of the Model Array

E for Various Values of OLoad Impedance a 0
Z (ohms) 0 10 -20° -30° 40

I2 = vr/ 4

72+jO 0.201 0.201 0.202 0.203 0.205
150+jO 0.196 0.197 0.197 0.198 0.200
300+ jO 0.182 0.182 0.182 0.183 0.184
600+jO 0.147 0.147 0.147 0.148 0.148

72 + j [300,6h - (740/8,h)] 0.116 0.117 0.117 0.117 0.118

__h = n/2
72+jO 2.390 2.36 2.28 2.15 1.98

150+jO 1.480 1.47 1.44 1.39 1.32
300+jO 0.859 0.855 0.845 0.829 0.805
600+jO 0.466 0.465 0.462 0.457 0.450

72 + j [300t8h - (740/3h)] 2.390 2.36 2.28 2.15 1.98

/3 = 3/

72+jO 0.955 0.927 0.799 0.895 0.933
150+jO 0.925 0.899 0.767 0.830 0.861
300+jO 0.875 0.853 0.720 0.736 0.755
600+jO 0.811 0.798 0.675 0.636 0.642

72 + j [300,8h - (740/,83k)] 0.347 0.345 0.334 0.358 0.364

/3h =1

72+ jO 0.564 0.723 0.782 0.796 0.785
150+ jO 0.568 0.727 0.791 0.806 0.794
300+ jO 0.607 0.784 0.866 0.887 0.870
600+jO 0.749 1.010 1.15 1.19 1.16

72 + j [300,/h - (740/,h)] 0.455 0.472 0.539 0.563 0.543

/3h = 57T/4

72+30 0.657 0.570 0.612 0.607 0.583
150+ jO 0.720 0.614 0.670 0.665 0.628
300 + jO 0.877 0.728 0.808 0.802 0.747
600+ jO 1.08 0.875 0.985 0.976 0.902

72.+ j [300,1h - (740/13h)] 1.73 1.31 1.55 1.53 1.37

The Angular Distribution of the In-Phase and the Phase-Quadrature Components of
the Scattered Field -In Fig. 6 we present some examples of the angular distribution of
the in-phase and the phase-quadrature components of the -plane scattered electric field
in the half-space on the illuminated side of the linear array. These graphs are obtained
from Eq. (30). Note the near symmetry of the field components about the reflected direc-
tion of observation for normal incidence and the lack of symmetry exhibited for an angle
of incidence of -40 degrees. The effect of changing the load impedance is seen, on com-
paring Figs. 6a and 6c, to result in merely a change in the level of the scattered field
without appreciable change in the angular distribution of its in-phase and phase-
quadrature components.

14



NRL REPORT 6681

-40 -20 0 20 40
ANGLE OF OBSERVATION (DEGREES)

(a) Normal incidence; load impedance = 72 + jO ohms; h = 7T/2

Fig. 6 - The angular distribution of
the phase-quadrature components
scattered electric field (Continued)

the in-phase and
of the H-plane

Re [E]_= in-phase component of Es

Im [Es ] quadrature component of Es
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-80 -60 -40 -20 0 20 40 60 80
ANGLE OF OBSERVATION (DEGREES)

(b) Angle of incidence = -40 degrees; load
impedance = 72 + jO ohms; h = 71/2

Fig. 6 - The angular distribution of the in-phase and
the phase-quadrature components of the H-plane
scattered electric field (Continued)

Re [E] in-phase component of E'

Im [E'] quadrature component of Es0 - ~~~~~~~~0
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-40 -20 0 20 40

ANGLE OF OBSERVATION (DEGREES)

(c) Normal incidence; load impedance =
600 + jO ohms; 83h =/2

Fig. 6 - The angular distribution of the in-phase and
the phase-quadrature components of the H-plane
scattered electric field

Re [Ed] - in-phase component of E'

im [Ed] quadrature component of Ed
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The Scattered Field Disfribution in 8h -In this section we present graphs which
show how the amplitude and phase of the H-plane scattered electric field of the model
array vary with the frequency of the illumination or the electrical half-length of the ele-
ments of the array. The direction of observation of the far-zone scattered field is cho-
sen as either the reflected direction or the back-scattered direction. All the results
presented in this section are calculated from Eq. (30).

In Fig. 7a we show the characteristics of the steady-state scattered field observed
in the reflected direction for normal incidence and a nonreactive load impedance of 72
ohms. Note the element resonance at /3 = 1.58 manifested by the maximum of the
scattered-field strength. In Fig. 7b we present the 83h characteristics of the reflected
field for normal incidence and a certain type of reactive load impedance. Again we ob-
tain a maximum of scattered field at 83h = 1.57, where the elements resonate. In addition,
a large resonance peak occurs at Ah = 3.64, where evidently the reactance of the load
resonates or tunes out the reactance of the impedance of the elements.

In Figs. 7a and 7b and in the figures to follow we find that the scattered field be-
comes quite weak for /h smaller than 0.40.

In Figs. 7c through 7f we show the field scattered in the reflected direction by the
model array plotted versus the electrical half-length of the elements of the array. In
Fig. 7c the central load impedance of the elements is a pure resistance of 600 ohms, and
the illumination is incident normal to the plane of the array. The large load resistance
appears to have obliterated the element resonance peak, leaving a slowly increasing am-
plitude of the scattered field with 3h, except for a small dip at 83h = .2. Figure 7e is
similar to Fig. 7c, as might be expected, since only the angle of incidence of the illumi-
nation differs in the two figures. In Fig. 7d we present the field scattered by the model
array of eight elements with nonreactive load impedances of 72 ohms when the illumina-
tion is incident at -40 degrees. The scattering characteristics exhibited resemble those
for the same loading but with normal incidence, as shown in Fig. 7a. The element reso-
nance appearing at /8h = 1.57 is the salient feature of Fig. 7d.

2.8 28 Oi
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(a) Normal incidence; load impedance = 72 + jO ohms

Fig. 7 - The H-plane scattered electric field
observed in the reflected direction as a function
of the electrical half-length of the elements of
the array (Continued)
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(b) Normal incidence; load impedance =
72 + j (300,8h - 740/,8h) ohms

(c) Normal incidence; load
impedance = 600 + jO ohms
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0.4 0.8 1.2 1.6 2.0 2.4 2.8 3.2 3.6
Gh

(e) Angle of incidence = -40
degrees; load impedance =
600 + jO ohms

4.0 4.4

j3h

(f) Angle of incidence = -40 degrees; load
impedance = 72 + j (300,8h - 740/,3h) ohms

Fig. 7 - The H-plane scattered electric field
observed in the reflected direction as a function
of the electrical half-length of the elements of
the array
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Figure 7f shows the amplitude and phase of the field scattered in the reflected di-
rection by the model array loaded with the indicated reactive impedances when the illu-
minating plane wave is incident on the array at -40 degrees. These characteristics
closely resemble those shown in Fig. 7b over the interval 0.4 to 2.5 in /3h. Intuitively,
the similarity seems reasonable, because the two sets of curves give the scattering
properties of the same array but at different angles of incidence of the illumination.
However, in the range extending from 2.5 to 4.4 neither the amplitude nor the phase
characteristic of Fig. f resembles closely the corresponding curve in Fig. 7b. An ex-
planation of this divergence is unavailable. The fairly sharp peak at /3h = 1.57 is, as
usual, associated with the fundamental resonance of the elements of the array. The very
high and narrow peak at h3 = 3.54 .comes about by virtue of the reactance of the load tun-
ing out the reactance of the impedance of the elements of the array at the frequency cor-
responding to this value of 3h.

We present in Fig. 8 the amplitude and phase of the electric field back-scattered
by the model array with various load impedances at the element centers when illuminated
by a plane electromagnetic wave incident at -40 degrees. In all three sets of back-
scattering characteristics we have a large peak in the vicinity of /3h = 2.44, where a first-
order grating lobe occurs according to Eq. (33b). The results shown in the figure exhibit
interference between the scattered-field components radiated by the individual elements
of the array. The interference manifests itself by the appearance of the periodic minima
in the amplitude of the field and the concurrent rather rapid advances in the phase of the
scattered field. The interference effects naturally are absent in Fig. 7 because in the
reflected direction the component scattered fields of the elements of the array are hearly
in time phase with each other. In fact, the general nature of the /3h characteristics of the
H-plane scattered field observed in any direction can be explained best with the aid of
Eq. (32). From Eq. (32) it is seen that the scattered field for a given load impedance and
angle of incidence consists of two factors: the reflection factor NGv exp [i (y1 + T12)] and
the interference factor [sin (N/2)N sin (/2)] exp [j(N 1),P/21, where qp=/d(sin0+sinin).
In the reflected direction, the scattered field becomes the reflection factor only, since in
this direction the interference factor becomes unity. In directions other than the re-
flected direction, the effect of the interference factor appears along with the effect of the
reflection factor. The magnitude of the interference factor is shown in Fig. 4 as the solid
curve plotted versus q/2. As stated earlier, Eq. (32) does not give accurate results near
the nulls of the interference factor, as indicated by the presence of minima instead of
nulls in Fig. 8. However, the positions of the minima and of the grating lobes in Fig. 8
almost coincide with the locations of the nulls and grating lobes, respectively, of the in-
terference factor. The amplitude curves of Figs. 8a and 8b resemble the general shape
of the magnitude of the interference factor (see Fig. 4), except for some asymmetry in-
troduced by the appropriate reflection factors shown in Figs. d and 7e. In Fig. 8c
the element load impedances are reactive, and the amplitude characteristic does not re-
semble the magnitude of the interference factor. Figure 7f, portraying the correspond-
ing reflection factor, accounts for the distortion. The high narrow peak at h = 3.55 in
Fig. 8c corresponds to a similar peak in Fig. 7f, where the reactance of the load tunes
out the reactance of the element of the array.

SOME PARAMETERS OF A PLANE-POLARIZED LINEAR ARRAY OF
CYLINDRICAL ELEMENTS DEDUCED FROM ITS SCATTERING
PROPERTIES

Up to this point we have made a study of the H-plane scattered field of a linear array
of cylindrical elements illuminated by a plane wave incident in the H plane of the array.
In other words, we have been concerned with the problem of determining the scattered
field given the character of the array and its illumination. Now, let us consider the in-
verse problem of the determination of some of the parameters of an unknown plane-
polarized linear array of cylindrical elements from the character of its H plane scattered
field and the known character of its incident illumination.
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(a) Angle of incidence = -40 degrees;
load impedance = 72 + jO ohms

(b) Angle of incidence = -40 degrees;
load impedance = 600 + jO ohms

Fig. 8 - The H-plane back-scattered electric
field as a function of the electrical half-length
of the elements of the array (Continued)
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(c) Angle of incidence = -40 degrees; load
impedance = 72 + j (300,8h - 740/8h) ohms

Fig. 8 - The H-plane back-scattered electric

field as a function of the electrical half-length

of the elements of the array

Let us assume that the plane of the array is known; then one can determine the plane

of polarization and, hence, the H plane of the array by the following well-known method.

Illuminate the array with a linearly polarized plane wave, incident on the array at some

convenient fixed angle of about 60 degrees or more. Rotate the plane of polarization of

the incident wave and vary the frequency of the illumination until a sizable back-scattered

field of the same polarization as the incident field is obtained. Now, with the frequency

fixed, maximize the amplitude of the back-scattered field by further rotation-tuning of

the plane of polarization of the incident wave. At this point, the plane of polarization of

the array is approximately the same as that of the illumination.

Now that the H plane of the array, a plane orthogonal to the plane of polarization of

the array, is determined, it is possible to deduce further information about the nature of

the scattering array from the knowledge and information obtained from the study of the

scattering properties of a linear array presented in the preceding sections of this report.
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The further information about the array deducible from its scattering properties consists
of the number of elements in the array, the interelement spacing, the H-plane radiation
pattern, when used as a uniformly excited transmitting array, and, possibly, the funda-
mental resonant frequency of the elements of the array.

In the following determinations we assume an illumination-array setup like that
shown in Fig. 1. The scattered field is examined only in the H plane of the array

As one continuously increases the frequency of the illumination of the array with a
fixed angle of incidence of -40 degrees and Z(co) for the load impedance of each element,
the amplitude of the back-scattered field resembles that of Fig. 8a. It follows simply
from Eqs. (33a) and (34) that the number of elements in the array is one plus the number
of minima lying between successive grating lobes in the back-scattered field. From
Figs. 8a and 8b, one observes that the scattering array has eight elements.

To determine the interelement spacing d, we make observations on the amplitude of
the back-scattered field at the far-zone observation points P and P2 of Fig. 9. From
point P we illuminate the array from a direction k1 degrees from a reference direction
with a plane electromagnetic wave and observe the amplitude of the back-scattered field
at P as the frequency of the illumination is scanned through several grating lobes spaced
uniformly in frequency by an amount Af 1 . At point P we repeat the experiment with 2
equal to ql plus 90 degrees and find the grating lobes separated by a frequency increment
Af2 . It is easy to show from Eq. (33b) in conjunction with Fig. 9 that the element spacing
d must satisfy the following transcendental relation:

sin-1Je/2Af 1d] + sin-[C/2Af 2 d] = /2. (36)

For good accuracy the positions of the observation points P and P2 are chosen so that
Afi and Af2 do not differ by more than 50% of the smaller of the two frequency incre-
ments. The element spacing can be found from Eq. (36) by a well-known graphical
technique.

With the number of elements and their spacing determined, it is a simple matter,
from the theory of arrays, to find the H-plane radiation pattern of the linear array when
used as a uniformly excited transmitting array at a given frequency.

When one measures the amplitude of the field scattered by the array in the reflected
direction as a function of the frequency of the illumination, more than one resonance

-4 d 
-0-0-0-0 0 -0-0 - LINEAR ARRAY

/ \ ~TO ARRAY 

A--P~~~REFERENCE \/ 

PDRECTION (REF ) X\

(REF)

Fig. 9 - Arrangement for the determination
of the element spacing of the array
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makes an appearance, because the load impedance of the elements usually exhibits some
reactance. Figures 7b and 7f show examples of this situation. To determine the reso-
nant frequency of the elements from these reflection w characteristics it becomes nec-
essary to identify the element-resonance peak. Apparently from the figures cited above,
the size of the element-resonance peak (at Ah = /2) changes, much less percentagewise
than the other resonant peaks, associated with the reactance of the load, as the angle of
incidence of the illumination undergoes a change from 0 to -40 degrees. With this crite-
rion, we may determine the resonant frequency of the elements of the array, which is
also the design frequency of the array. Whether this criterion for the selection of the
element-resonance peak is reliable for various kinds of reactive loads can only be an-
swered by further investigation.

CONCLUSIONS

A significant result of this investigation is the discovery that the H-plane scattered
field of a linear array of cylindrical elements illuminated by a plane electromagnetic
wave consists, to the first approximation, of two factors: a reflection factor and an in-
terference factor. The interference factor, defined as

s i n (/ 2)

where q' = 8d(s in 0 + s i n Oi n d is of the same form as the array factor of a uniform lin-
ear array of N elements excited with uniform amplitude and element-to-element phase
progression. In the reflected direction, where X = -k)i 1C and qP vanishes, the scattered
field becomes equal to the reflection factor, since the interference factor becomes unity.
More physically speaking, the components of the scattered field contributed by the indi-
vidual elements of the array are in time phase in the reflected direction. The reflection
factor is calculated from an approximation technique incorporating the set of integral
equations characterizing the array and the incident illumination. It follows that the re-
flection factor is a function of the electrical half-length of the elements, the electrical
spacing of the elements, the load impedance, and the angle of incidence of the illumina-
tion. With the aid of the interference factor of the approximate formula for the scattered
field, it is possible to discern much about the nature of the H-plane scattered field, for
example, the positions of the grating lobes and the minima of the scattering pattern for
various plane-wave illuminations.

From the scattering characteristics of a passive linear array of cylindrical ele-
ments, one can deduce its plane of polarization, the number of elements in the array, the
interelement spacing of the array, the H-plane radiation pattern of the array, when used
as a uniformly'excited transmitting array, and, possibly, the resonant frequency of the
elements of the array.

No doubt the technique described in this report for the calculation of the scattered
field of a linear array can be extended to the study of the scattering properties of planar
arrays of cylindrical elements.
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Appendix A

THE EVALUATION OF THE APPROXIMATION TECHNIQUE OF
CALCULATING THE CURRENTS INDUCED IN AN ARRAY

BY AN INCIDENT PLANE WAVE

To test the induced currents calculated using Eqs. (20) and (21) for a given angle of
incidence, array loading, and value of 83h, we substitute the current coefficients di and 
into the set of integral equations of the array, Eq. (19), and compare the complex values
of the right and left members of each equation of the set for various values of 8z. In
Table Al, we present some examples of the comparison of the right and left members of
the set of equations (19). The percentage magnitude difference is defined as 100 times
the ratio of the absolute value of the difference between the magnitudes of the right and
left members to the average of the two magnitudes. The symbol m designates the equa-
tion associated with the m-th element of the array.

Graphs of the percentage magnitude difference and the absolute value of the angle
difference, both averaged over the array, as well as the normalized current amplitude of
the fourth element are shown in Fig. Al plotted versus the position along the array ele-
ments. It is assumed for this discussion that the normalized-current amplitude distri-
butions do not change appreciably from element to element in the array or with the angle
of incidence. For a given value of 8h, it is observed from both the table and the graphs
that the margin by which the calculated currents fail to satisfy Eq. (19) is in general,
greatest for the larger load impedances and angles of incidence. The graphs also show in
general that the margin of failure to satisfy Eq. (19) becomes large in the regions where
the normalized current amplitude is small. An exception occurs in the case of /3h = 3. 0,
where the margin of failure to satisfy becomes fairly large in the vicinity of 83 = o for
the larger load impedances, although the current is large in this region. Since the am-
plitude of the electromagnetic field radiated by a given differential length within a cylin-
drical element varies linearly with the amplitude of the current in the elementary length,
it follows that one should obtain a more realistic error criterion, as far as the scattered
field is concerned, if both the percentage magnitude difference and the angle difference
are multiplied at each point in 8iz by the normalized current amplitude as a weighting
factor. Because of this weighting factor, the large margins of failure to satisfy Eq. (19),
which occur in low-current regions of /3z, do not introduce large errors when one calcu-
lates the scattered field of an array with the numerical approximation technique described
in this report.

Needless to say, this method of evaluation of our approximation leaves much to be
desired. A much more worthwhile evaluation can be made by comparing the calculated
results with either the experimental or theoretical results of other research workers.
Unfortunately, such results are not available at present in the antenna literature as far
as the author has been able to determine from a limited amount of literature search.
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Table Al
The Degree to Which the Calculated Array Currents Fail to Satisfy the Set of Integral
Equations of the Model Array at Various Points along the Length of the Elements

I MagnitudeDifference I Angle Difference Magnitude Difference Angle Difference
I (%) I (degrees) I (%) (degrees)

/3h = 1.5; /3a = 1.2; z = 72 + jO ohms; /3k = 3.0; /8 = 2.5; 'knc = 0 degrees;
Oi.. = -40 degrees Z= 600 + johms

1 1.4 5.1 1 ' 12.8 2.3
2 1.1 2.5 2 9.6 2.2
3 2.2 2.5 3 8.3 1.5
4 3.2 2.7 4 7.6 1.2
5 3.2 3.3 - - - - - - - - line of symmetry - - - - - - - - -

6 1.4 3.0 3.0; z = 2.5; 'ji_ = -40 degrees;
8 2.0 2.0 Z 600 + johms

1 ~~~~14.0 1.4
A3k = 1.5; /3z = 1.2; Oi,, = 0 degrees; 2 14.3 2.0

z = 72 + jO ohms 3 16.0 2.1

1 3.7 3.0 4 16.0 2.1
2 6.0 2.4 5 16.0 2.1
3 5..2 2.7 6 16.1 2.1
4 5.5 2.6 7 15.9 2.2
-__ ------ line of symmetry --- 8 16.6 1.0

/3k = 1.5;,8z = 1.2; O, = 0 degrees; /3k = 3.0; 8z = 0; ki = -40 degrees;
z_= 600 + jOohms Z_= 600 + jOohms

12.2 2.4
14.3 1.8
14.0 3.0
13.8 2.0

- - - - -line of symmetry - - - - - - - - -

,3h = 1.5; /8 = 1.2; kinc = -40 degrees;
z = 600 + jO ohms

9.4
5.9
3.9
3.2
3.1
5.2
5.7
4.4

1 14.4
2 8.0
3 7.7
4 9.5
5 12.0
6 13.5
7 8.6
8 7.7

,83 = 1.5; /8 = 1.2; Oinc = 0 degrees;
Z = 72 - j (43.5) ohms

3.7 3.5
6.6 2.8
5.2 3.1
5.8 3.0

-- line of symmetry - - - - - - - - -

,6 = 3.0;1,/ = 2.5; oinC = 0 degrees;
z = 72 + jO ohms

1.8
2.9
2.8
2.8

10.3
7.9'
6.6
6.2

--------- line of symmetry ---------

,8 = 3.0; /z = 2.5;(i., = -40 degrees;
Z = 72 + jO ohms

1 9.8 16
2 10.6 20.9
3 13.6 22.0
4 15.5 19.2
5 12.5 20.0
6 11.8 20.1
7 15.3 20.4
8 5.8 20.0

1
2
3
4
5
6
7
8

1
2
3
4

1
2
3
4
5
6
7
8

11.8
13.2
13.9
13.5
13.7
13.5
14.1
12.2

5.9
7.1
6.8
6.7
6.8
6.9
6.7
7.5

Ah = 3.0; 8z = 0; Oi. = O degrees;
Z = 72 + j (653) ohms

14.7 8.3
16.7 6.9
16.7 6.6
16.7 6.6

- - - - -line of symmetry - - - - - - - - -

/3h = 3.0;/a =O0; Oki = -40 degrees;
Z = 72 + j (653) ohms

12.4
13.2
13.0
13.0
13.0
12.7
13.1
14.5

10.4
13.1
14.0
13.0
13.3
13.1
13.2
12.5
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(a) 8h = 1.5; Z = 72 + jO ohms

Bz

(c) 8h = 1.5; Z = 600 + johms;
iic = degree

(b) 8h = 1.5; Z = 72 - j43.5 ohms
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.29

Fig. Al - The magnitude difference and the absolute
value of the angle difference, both averaged over the
array, shown as functions of position along the length
of the elements of the model array (Continued)
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value of the angle difference, both averaged over the
array, shown as functions of position along the length
of the elements of the model array (Continued)
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Fig. Al - The magnitude difference and the absolute
value of the angle difference, both averaged over the
array, shown as functions of position along the length
of the elements of the model array (Continued)
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10.0 ziiW
a:

W
0

8.0 iLi

W
u:

6.0 u-
0
W
-J

4.0 
W
(D

2.0 .<.

(j) 8h = 3.6; Z = 72 + j874 ohms; 0h. = 40Odegrees
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(k) /h = 3.6; Z = 72 + j874 ohms; Oin = degree

Fig. Al - The magnitude difference and the absolute
value of the angle difference, both averaged over the
array, shown as functions of position along the length
of the elements of the model array (Continued)
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(1) 8 = 3.6; Z = 600 + jO ohms; 0i., = 0 degree

I O 0.8 1.2 1.6 2.0 24 2.8 3.2 3.6

(m) 83 = 3.6; Z = 600 + jO ohms; 0i.. = -40 degrees

Fig. Al - The magnitude difference and the absolute
value of the angle difference, both averaged over the
array, shown as functions of position along the length
of the elements of the model array
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Appendix B

THE AMPLITUDE AND PHASE OF THE EFFECTIVE SCATTERING
COEFFICIENT OF THE ELEMENTS OF THE MODEL ARRAY

We list in Table B1 the amplitude G and the phase i of the effective scattering co-
efficient of the i-th element of the model array, where i runs from one to eight. In these
tabulations DFA means the deviation from the average and DFS means the deviation from
8, where = 8d sin inc (see Eq. (31) of the text). At the bottom of each table for nor-
mal incidence, we show the rms value of the percent DFA of the Gi and the rms value of
the DFA of the i both taken over the array. In the case of incidence at -40 degrees, the
rms value of the DFS of Ai is given.

The tables bear out the statement made in the text that the values of Gi remain ap-
proximately invariant over the array and the yi approximately linear along the array.
Tables BI (k), BI (1), and Bi (n) exhibit the largest deviation from this condition because
they involve the resonances at,8 = 7/2 and near /3k = 3.6. Note that the element reso-
nance has little effect when the load impedance is 600 ohms as in Tables B (q) and
B1 (r).

Table BI
The Amplitude and Phase of the Effective Scattering

Coefficient of the Elements of the Model Array

| DFA ofG | DFA Of I| Ayi | DFS of Ayj________J (%) |(degrees) (degrees) _j(degrees) (degrees)

(a) = 72 + jO ohms; 83 = 1.0; 0inc O degree

1 0.0522 3.0 77.0 -0.1

2 0.0503 -1.0 76.5 -0.6 _ _

3 0.0495 -3.0 78.0 0.9 _ -

4 0.0508 1.0 77.1 0.0 _

---------------------- line of symmetry ----------------------

5 0.0508 1.0 77.1 0.0 - -

6 0.0495 -3.0 78.0 0.9 - -

7 0.0503 -1.0 76.5 -0.6 - -

8 0.0522 3.0 77.0 -0.1 - -

rms value - 2.24 - 0.543 - -

(Table B continues)
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Table BI (Continued)

DFA of G| DFA of Ayi | DFS of Ay

(degrees)_ (degrees) (degrees) (degrees)

(b) Z = 72 + j ohms; /h = 1.0; inc = -40 degrees

1 0.0532 2.1 78.6 _
-76.5 -2.8

2 0.0535 2.7 2.1 _
-74.5 -0.8

3 0.0529 1.5 -72.4 _
-74.9 -1.2

4 0.0523 0.4 -147.3 _
-72.9 0.8

5 0.0511 -1.9 -220.2 _
-74.0 -0.3

6 0.0512 -1.7 -294.2 _
-71.9 1.8

7 0.0503 -3.4 -366.1 _
-75.2 -1.5

8 0.0520 -0.2 -441.3 _- -

rms value - 2.00 1.52

(c) Z = 300 + jO ohms; 834 = 1.0; O, = 0 degree

1 0.0417 2.2 56.6 -0.5 - -

2 0.0404 -1.0 56.8 -0.3 - -

3 0.0403 -1.2 58.1 1.0 - -

4 0.0408 0.0 57.1 0.0 - -

---------------------- line of symmetry ----------------------

rms value I - 1.35 | - | 0.579 | - J -

(d) z = 300 + jO ohms; /h = 1.0; in = -40degrees

1 0.0427 3.4 57.6 -

-76.0 -2.3
2 0.0422 2.2 -18.4 _

-74.1 -0.4
3 0.0417 1.5 -92.5 _

-74.4 -0.7
4 0.0411 0.0 -166.9 _

-72.7 1.0
5 0.0406 -1.2 -239.6 _

-73.9 -0.2
6 0.0406 -1.2 -313.5 _

-72.1 1.6
7 0.0404 -1.7 -385.6 _

-75.5 -1.8
8 0.0411 0.0 -461.1 _- -

rms value - 1.75 - 1.35

(Table Bl continues)
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Table BI (Continued)

. G. |DFA of G I DFA of yi A^/ DFS of Ayi
______ (%) (degrees) (degrees) (degrees) (degrees)

(e) z = 600 + jO ohms; = 10; = 0 degree

0.0294 1.4 45.0 -0.6 -

2 0.0287 -1.0 45.4 -0.2 - _

3 0.0288 -0.7 46.3 0.7 - _

4 0.0290 0.0 45.0 0.0 - _

---------------------- line of symmetry ----------------------

rms value | - | 0.929 | - | 0.472 | - |

(f) Z= 600 + jO ohms; /3 = 10; i n = -40 degrees

1 0.0299 2.8 45.6
-75.3 -1.6

2 0.0296 1.7 -29.7 _
-73.9 -0.2

3 0.0293 0.7 -103.6 _
-74.0 -0.3

4 0.0289 -0.7 -177.6 -

-72.9 0.8
5 0.0287 -1.4 -250.5 _

-73.9 -0.2
6 0.0287 -1.4 -324.4 _

-72.5 1.2
7 0.0287 -1.4 -396.9 _

-75.1 -1.4
8 0.0290 -0.3 -472.0 _ 

rms value - 1.49 - - 0.845

(g) Z = 72 + j ohms; Ah = 3.6; inc = Odegree

1 0.0823 1.4 -63.1 -4.4 -

2 0.0798 -1.7 -59.5 -0.8 - _

3 0.0807 -0.6 -56.8 1.9 - _

4 0.0820 1.0 -55.5 3.2 - _

---------------------- line of symmetry ----------------------

rms value - 1.25 | 2.91 -

(Table B continues)
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Table B1 (Continued)

G | DFA of Gi I i DFA of yi Ayi 1 DF8 of Ayi
____ (%) | (degrees) (degrees) (degrees) (degrees)

(h) Z = 72 + jO ohms; 8h = 3.6; in = -40 degrees

1 0.0817 -3.7 -71.9 _
-263.6 -2.9

2 0.0873 3.0 -335.5 _
-267.6 3.7

3 0.0867 2.2 -603.1 _
-264.6 -0.4

4 0.0853 0.6 -867.7 _
-265.8 1.0

5 0.0851 0.4 -1133.5 _
-264.5 -0.2

6 0.0824 -2.8 -1398.0 _
-262.7 -3.8

7 0.0826 -2.6 -1660.7 _
-262.9 -4.0

8 0.0871 2.7 -1923.6 _- -

rms value 2.50 - - 1.74

(i) Z = 600 + j ohms; 8h = 3.6; ki, = 0 degree

1 0.128 3.4 -38.1 -6.6 - -

2 0.121 -2.3 -32.9 -1.4 - -

3 0.122 -1.5 -28.7 2.8 - -

4 0.124 0.2 -26.4 5.1 - -

---------------------- line of symmetry ----------------------

rms value 1 - f 2.19 - ( 4.45 1 -

(j) Z = 600 + j ohms; 8h = 3.6; c = -40 degrees

1 0.132 -5.0 -51.5 _
-262.3 1.6

2 0.144 3.6 -313.8 _
-268.9 -2.4

3 0.145 4.3 -582.7 _
-264.8 0.6

4 0.141 1.4 -847.5 _
-266.2 -0.6

5 0.141 1.4 -1113.7 _
-265.0 0.7

6 0.135 -2.9 -1378.7 _
-261.4 2.5

7 0.132 -5.0 -1640.1 _
-261.2 2.3

8 0.142 2.2 -1901.3 _- -

rms value - [ 3.51 - 2.77

(Table Bi continues)
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Table BI (Continued)

DFA of G I DFA Of y Ayi DFS of Ayi
(%) | (degrees) |_(degrees) (degrees) (degrees)

(k) Z = 72 + j [300,87 - (740/3h)] ohms; A = 3.6; in, = 0 degree

1 0.390 10.0 -2.9 -13.9 - -

2 0.340 -4.1 6.5 -4.5 - -

3 0.336 -5.2 17.4 6.4 - -

4 0.352 -0.7 23.0 12.0 - -

---------------------- line of symmetry ----------------------

rms value - 6.01 - 10.22 - |

(1) z = 72 + j [300,3 - (740/,8h)] ohms; h = 3.6; ic = -40 degrees

1 0.480 -8.9 -33.5 -

-258.4 -6.8
2 0.567 7.6 -291.1 -

-273.2 8.0
3 0.587 11.4 -565.1 -

-264.9 -0.3
4 0.554 5.1 -830.0 -

-267.1 1.9
5 0.558 5.9 -1097.1 -

-266.4 1.2
6 0.505 -4.2 -1363.5 -

-258.4 -6.8
7 0.458 -13.1 -1621.9 -

-254.8 -10.4
8 0.508 -3.6 -1876.7 - - -

rms value 8.13 6.21

(m) z = 72 + jO ohms; /3h = 7T/2; inc = 0 degree

1 0.278 -7.0 -7.1 -4.3 - -

2 0.313 4.7 -0.5 2.3 - -

3 0.300 0.3 -2.2 0.6 - -

4 0.305 2.0 -1.6 1.2 - -

---------------------- line of symmetry ----------------------

rms value - 4.34 - 2.53 - |

(Table B continues)
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Table B1 (Continued)

G DFA of Gi I i DFA ofyP IAi DF gOf -
__i (%) (degrees) (degrees) (degrees) (degrees)

(n)Z= '72 + jO ohms;,8h = T/2; inc = -40degrees

1 0.289 16.5 -21.2 _
-110.7 5.0

2 0.233 -6.0 -131.9 _
-109.5 6.2

3 0.240 -3.2 -241.4 _
-115.5 0.2

4 0.258 4.0 -356.9 _
-118.8 -3.1

5 0.265 6.8 -475.7 _
-118.7 -3.0

6 0.255 2.8 -594.4 -

-115.3 0.4
7 0.233 -6.0 -709.7 _

-104.8 10.9
8 0.213 -14.1 -814.5 _- -

rms value - 8.83 - - 5.24

(o) Z = 300 + jO ohms; 8 =T/2; inc = Odegree

1 0.105 -2.0 -3.0 -1.95 - -

2 0.109 2.0 0.3 1.35 - -

3 0.107 0.0 -1.0 0.05 - -

4 0.108 1.0 -0.5 0.55 - -

---------------------- line of symmetry ----------------------

rms value - | 1.50 | - | 1.22 | - -

(p) z = 300 + jO ohms; 8 = T/2; inc = -40 degrees

1 0.109 8.4 -8.6
-114.7 1.0

2 0.0986 -1.6 -123.3 -

-112.5 3.2
3 0.0974 -3.6 -235.8 _

-114.4 1.3
4 0.101 0.4 -350.2 _

-117.0 -1.3
5 0.104 3.4 -467.2 -

-118.0 -2.3
6 0.104 3.4 -585.2 _

-116.5 -0.8
7 0.0985 -2.6 -701.7 .4

-111.4 4.3
8 0.0932 -7.6 -813.1 _- -

rms value 4.66 2.36

(Table Bi continues)
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Table BI (Continued)

.i I G. I DFA of Gi i DFA of A/ i | DF8 of Ayj
(%) (degrees) (degrees) (degrees) (degrees)

(q) Z = 600 + j ohms; Ah = 7T/2; inc = Odegree

0.0575 -1.3 -1.71 -1.13

2 0.0587 0.8 0.24 0.82 _ _

3 0.0583 0.1 -0.60 -0.02 _ _

4 0.0585 0.4 -0.26 0.32 _ _

---------------------- line of symmetry ----------------------

rms value - | 0.79 1 - 0.716 - -

(r) z 600 + jO ohms; =8 = /2; inc -40 degrees

1 0.0589 4.65 -4.8 _
-115.4 0.3

2 0.0558 -0.85 -120.2 _
-113.9 1.8

3 0.0551 -2.1 -234.1 _
-114.6 1.1

4 0.0561 0.32 -348.7 -

-116.3 -0.6
5 0.0574 1.99 -465.0 _

-117.2 1.5
6 0.0574 1.99 -582.2 _

-116.4 -0.7
7 0.0558 -0.85 -698.6 _

-113.4 2.3
8 0.0538 -4.41 -812.0 _- -

rms value 2.62 1.36
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